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Introduction to Causal Inference

Causal inference aims to mathematize how one can make causal statements from data. Causality

is often drawn from awell done randomized controlled trial (RCT). Sometimes RCTs are unfeasible

andwemustworkwith only observational data. With certain causal assumptions, we can estimate

the causal effect with observational information alone. These assumptions are depicted in a graph

like the one below.
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Figure 1. A Causal Directed Acyclic Graph (DAG). Is this red arrow real?

A common causal example is that of smoking and lung cancer. Perhaps people who get lung

cancer and people who smoke share a genetic factor. Then there would be a positive correlation

between smoking and lung cancer without there being any causal influence.

One method to get rid of confounding is to “control” for the confounder. When running a regres-

sion, this means including genetic information in your regression.

Proximal Causal Learning

We wish that we have access to the true confounder, but oftentimes we can only get noisy

measurements. Some reasons may include:

Privacy Issues People who take surveys do not want to divulge identifying information.

Too Expensive It may be too expensive to collect the true gold-standard data.

Technologically Impossible It is impossible to get the data we suspect is a confounder.
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Figure 2. Allowed Causal DAG for Proximal Causal Learning

Recent work has shown that with two conditionally independent proxies, we can “bypass” using

U to find the direct effect of T on Y [8].

Proximal Two Stage Least Squares (P2SLS)

Tchetgen Tchetgen dubs his method with proxies “Proximal Two Stage Least Squares (P2SLS)”

after that of the more common Two Stage Least Squared estimator [1].

I provide a proof of the linear case as it illustrates some issues we deal with and ourmotivations.

Proof:

Assume E[Y | U, T, Z] = βT ∗ T + βU ∗ U + β0 and that E[W | U, T, Z] = αU ∗ U + α0 (this

assumption is violated in our second problem).

Then, via the tower rule of expectation:

E[Y | T, Z] = βT ∗ T + βU ∗ E[U | T, Z] E[W | T, Z] = αU ∗ E[U | T, Z] + α0 (1)

Noting that E[U | T, Z] ∝ E[W | T, Z], we estimate Ŵ = E[W | T, Z] through linear regression

and use Ŵ as our proxy control variable [5].

My contributions

1. Demonstrate a new Bayesian bootstrapping method that performs better than the naive

regression often employed under an ordinal confounder.

2. Illustrate the importance of cross-fitting for the proximal two stage least squares.

3. Introduce an ε, δ differential privacy application of proximal causal learning.

Ordinal Confounders

Ordinal variables are ordered, but cannot be interpreted as having constant scale. For instance,

education level is ordinal: College Degree > High School, but perhaps the difference between

Graduate Degree and College Degree is less than the difference between College andHigh School

Degree.

In various experiments we may not care about the individual binned data, but instead a hidden

process that generates the bin. We may think education level is continuous: no same two people

are equally knowledgeable. It is difficult, if not impossible, to measure this directly, so we try to

approximate it by using the degree.

Graphically, let O be the binned ordinal data and U the hidden confounder we really want to

measure. Then, a diagram of our assumptions can be seen below:
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Figure 3. Assume ordinal proxy.

Main Result: Bayesian Bootstrapping Proxies

If U is normal, then we can use a probit regression to simulate values of U conditional on either

T , or Y , or both using its posterior distribution. The posterior is a constrained normal distribution

[see [4] for more].
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Figure 4. Bayesian Bootstrap Causal DAG. Here, ZT is the simulations from T and WY is the simulations from Y .

Naturally T generates ZT and because we are using O as our ordinal data O helps in generating

ZT . The remarkable thing is that empirically, ZT 6⊥⊥ U | (T, O). We are getting new information

about U that is not in O. (The same goes for WY .

Issues and our Proposed Solutions

Problem 1: The stability of the proximal two stage least squares estimator

Proximal two stage least squares lets E[W | T, Z] be our proximal confounder [8]. For simplicity,

assume linearity:

E[W | T, Z] = αT ∗ T + αZ ∗ Z and if αT � αZ, then

E[Y | T,E[W | T, Z]] ≈ T + αT ∗ T

This creates very unstable estimates for the parameter of interest.

Solution: Cross-fitting Cross-fitting de-correlates E[W | T, Z] with T so that even if αT � αZ ,

the estimates are ok. While it was popularized in double machine learning, we find that it holds

another application here [2].

Problem 2: WY is a descendant of Y . This creates a biased estimate.

As seen in Figure 4, Y → WY . Ultimately, this leads to a biased estimate.

Solution: Create a dummy proxy variable We wish to get rid of the direct effect of Y on WY .

One way to do this is to create a noisy proxy of Y call it Y0 ≡ Y + ε : ε ∼ N(0, 1). Then we can

estimate the direct effect and remove it through the backdoor criterion [6].
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Figure 5. Dummy variable graph

Introducing an ε − δ Differential PrivacyAlgorithm

User privacy is becoming increasingly important as personal data is fuelling algorithms we use

every day. One framework for privacy is ε, δ differential privacy.

Algorithms take in inputs (datasets) and generate outputs. Consider two datasets that differ

with one entry (one row): X, X ′, such that X∆X ′ = 1. Then a random algorithm A that

outputsA(X) is ε, δ differentially private if

Pr (A(X) ∈ S)
Pr (A(X ′) ∈ S)

≤ exp(ε) + δ ∀S ∈ Range(A)

Essentially, an algorithm is private if one cannot guess with high probability whether someone’s

data is used in the algorithm or not.

Consider a dataset (T, U, Y ) andwewish to keep (U, Y ) private, consider the ε, δ proximal causal

learning algorithm that estimates an ATE.

1. Use the Laplacian mechanism to add noise to U and Y [3].

2. Use proximal learning algorithms and the two proxies of U to estimate the ATE.

Bayesian Bootstrapping Simulation Results

We sample edge coefficients ∈ [−5, 5] ⊂ R and dispersion parameters uniformly at random ∈
[1, 10] ⊂ R. We make sure to sample fraction edge-coefficients so that we do not fall into the trap

of varsortability [7].

Statistic Cross-fit P2SLS Naive Full Bootstrap KnownW Oracle

Fig 4 Fig 5 Bootstrap Naive

Mean
Yes 1.52 1.14 0.69 9.13 0.35 347.58 0.03

No 39.76 1.14 0.68 43.56 0.10 0.79 0.03

Median
Yes 0.001 0.12 0.05 0.39 0.002 0.001 0.002

No 0.001 0.12 0.05 0.39 0.001 0.001 0.002

Table 1. Simulation Results: Squared Error across many initial setups (sims = 60,000; n = 100).

Our full bootstrap method performs better than the naive regression adjustment.

Residualizing away the Y → WY effect is the worst estimator.

Cross-fitting is essential to reduce the prevalence of high estimates in P2SLS.

Even with cross-fitting, P2SLS estimates highly erroneous values.

Questions and FutureWork

How does this method work asymptotically?

Since Y is a parent of WY , the estimate is biased. Why is the residual result much worse?

How does this method work with other statistical families?

Can we create an ε, δ algorithm with hidden treatments?
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