example_logistic.Rmd
Set up our causal model.
n <- 1e2
U <- rnorm(n)
O <- as.numeric(cut(U, 5)) # other ways to generate ordinal variables
Tstar <- 0.75 * U + rlogis(n)
T <- 1*(Tstar > 0)
Ystar <- -0.75 * T + U + rlogis(n)
Y <- 1*(Ystar > 0)
dat <- data.frame(cbind(U, T, Y, Tstar, Ystar, O))
Look at our Naive estimate
##
## Call: glm(formula = Y ~ T + O, family = binomial(), data = dat)
##
## Coefficients:
## (Intercept) T O
## -2.1202 -0.4108 0.8288
##
## Degrees of Freedom: 99 Total (i.e. Null); 97 Residual
## Null Deviance: 138.3
## Residual Deviance: 126.1 AIC: 132.1
Look at our bayesian bootstrapping method
## $what
## [,1]
## 1 -2.30925754
## 2 0.01791351
## 3 -3.73027060
## 4 -1.00461215
## 5 0.79989027
## 6 2.03465301
## 7 -3.65028161
## 8 -0.93373371
## 9 -0.96169727
## 10 0.06363433
## 11 -2.28166849
## 12 1.76523290
## 13 3.26317811
## 14 -3.10056065
## 15 -0.42846523
## 16 -2.93333885
## 17 -2.26257898
## 18 0.10041404
## 19 -0.01867353
## 20 -1.47925400
## 21 0.33716795
## 22 -0.65344191
## 23 -2.21605908
## 24 1.53905815
## 25 3.38840068
## 26 0.24444649
## 27 -2.22225864
## 28 0.10094314
## 29 -1.51777081
## 30 -1.52682377
## 31 1.55662474
## 32 -0.71753593
## 33 0.05128253
## 34 1.65128001
## 35 -0.70454677
## 36 -0.13481575
## 37 -3.76750277
## 38 -0.47427305
## 39 0.14354999
## 40 1.68108947
## 41 0.04144657
## 42 -2.35532594
## 43 -0.01417697
## 44 -0.56783396
## 45 -0.25027792
## 46 3.21410529
## 47 -0.05690095
## 48 0.14634405
## 49 -0.05125560
## 50 -3.89469156
## 51 1.73281829
## 52 -0.55476168
## 53 0.02464755
## 54 -0.21122014
## 55 -0.56491529
## 56 0.17020207
## 57 -3.78992459
## 58 2.49274065
## 59 0.07316771
## 60 -0.88319049
## 61 0.92117390
## 62 -1.46732385
## 63 1.58865945
## 64 0.28175056
## 65 -2.19616329
## 66 -2.44441314
## 67 0.85083244
## 68 -0.87465174
## 69 -0.46054775
## 70 -3.65297207
## 71 -2.36116031
## 72 0.30538330
## 73 0.78916202
## 74 0.31961819
## 75 1.60504871
## 76 -0.18738421
## 77 0.18253588
## 78 -0.49862630
## 79 0.24165384
## 80 0.08562559
## 81 3.28550293
## 82 1.63207624
## 83 1.04832227
## 84 -0.69523720
## 85 -1.52991316
## 86 0.89754948
## 87 -3.78204328
## 88 -0.05897442
## 89 -0.17613918
## 90 -0.04940090
## 91 0.36342066
## 92 0.80248891
## 93 0.94688646
## 94 -0.89398571
## 95 -0.13309189
## 96 1.86304090
## 97 -0.52968585
## 98 0.81884186
## 99 1.59740928
## 100 -0.67784965